Video

# The Wisdom of the Crowd

Inspired by this segment of the BBC’s series, The Code, I recently tried replicating the jelly bean experiment during my school’s science fair.

I filled an old pickle jar with jelly beans and put it on display as students, teachers and parents explored the science fair. All science fair visitors were invited to estimate the number of jelly beans in the jar for a chance to win all the jelly beans. Meanwhile, I collected the estimates to determine whether the average estimate approached the actual number as more and more people participated.

In order to streamline the data collection, I had students enter their estimate in a google form. The estimates were automatically collected in a spreadsheet that I could analyze. It only took a few minutes to graph the results:

The display was a popular exhibit at the science fair and appealed to both elementary and secondary students, as well as parent visitors. As it turned out, the three best estimates all came from elementary students. I just presented the results at the elementary school assembly and it was a big hit. It was great to be able to present scientific evidence that two heads (or many heads) are better than one!

Would you like to give this a try at your school? Here’s a sample Google Form that you can use to get started.

# Verify and Jutsify

One of the requirements of middle school math in the International Baccalaureate program is that students must investigate patterns, describe them as general rules and either prove, or verify and justify, that they are true.

Because the proof, verification and justification (i.e. how you show your rule will work in any situation) depends on the situation, my students often struggle with this part of the task. I find it equally difficult to explain to them what is expected without giving them the answer.

A while ago, I used a Google Form to have students consider various statements about the properties of straight lines. I had done activities like this before as a way to assess prior knowledge and initiate discussion, but this time I required that students give a reason for their answer.

# Digging for deeper mathematical thinking

I recently wrote about using an electronic graphing tool to speed up the mechanics of graphing so that students could make deeper connections about how the content we were covering. The activities that followed were a totally serendipitous foray into some very rich math discussions. Here’s the story…

One of the requirements of the math framework in the school where I teach is that we assess students’ ability to investigate patterns, describe them a general rules and verify/prove that they are true. So, I had students investigate how the values of m and b affect the shape of linear graphs (y = mx + b). Students used an electronic graphing tool in order to generate a variety of graphs quickly in order to make observations. If you’re interested in that part of the story, you can read about it here. If you’re interested in using electronic graphing tools with your class, you should also check out this one, which I only just discovered and is much better than what I used with my class. Continue reading

# Speeding up the mechanics to slow down the thinking

Heading into my math 8 unit on linear relationships, I knew that I wanted students to use electronic tools like Google Sheets, Excel or Numbers to generate and manipulate graphs. The students got a bit of a preview when we did a “live graphing” activity at the end of the unit on area and volume. Then, when the new unit began, I had each student make a copy of a Graphing Spreadsheet I had created using Google Sheets*.

# Live graphing!

What do you do with 44 grade 8 students on a sunny Friday morning? Instantly build a graph to reveal a pattern!

It was the end of the week and it was going to be a shorter-than-usual class. I wanted students to learn the relationship between the diameter of a circle and its circumference while also learning that graphing data is one way of visualizing relationships.

Before class started, I made a simple Google Form and raided the science lab for callipers and measuring tapes. At the beginning for class, it took about 5 minutes to show students the form and show them how to use the callipers. I then sent them off to find and measure as many circles as they could find around the school, entering the data in the form as they went. Students used laptops, tablets and smartphones to access the form, but I also had a computer set up in the classroom to prevent technological glitches from getting in the way of the fun.

# Blog Series: Giving Better Feedback

I few weeks ago, I wrote about why I wanted to try giving students written feedback instead of number grades. I am now a few weeks into that experiment and I wanted to share one of the strategies that has made the switch possible.

Since I stopped giving students number grades, I have been using Google FormsAutocrat and gClass Folders to give students detailed written feedback about their work. While I’m a willing ed-techie, I’m still definitely a novice, so here’s a quick synopsis of how I got started…

I suppose the whole journey began a while ago when I was suffering major hand cramps from marking science labs: my body just couldn’t handle the repetitive strain of constantly writing out reminders for students to label the axes of their graphs and write a conclusion that refers back to their hypothesis. So, I created a word document template that I could use to give students credit for what they did well, while also reminding them about what they needed to improve in subsequent reports. For more details, check out the full post.

This strategy was really helpful for formative work, but when it came to summative assessments, I wanted to be able to give students more detailed feedback that better reflected the spectrum of achievement. For example, rather than indicating whether they did or didn’t label the axes of their graph, I want to be able to comment on the extent to which they generated an appropriate graph and interpreted it accurately. This information was already contained in the rubrics that I use, but even when I highlighted the descriptors that fit each student’s work, students often didn’t read the comments.

My next trick was to create a Google Form version of the rubric. Rather than marking a paper copy of the rubric, I filled out the Google Form version of the rubric. The result was a spreadsheet in which I had a specific set of descriptors about how each student had performed in relation to the assignment criteria. I then used the AutoCrat script to create a one-page individualized letter for each student with prompts for reflecting on their work. For more detail, check out this post.

Once I worked out the kinks, the system worked quickly and efficiently. In fact, generating the forms was much faster than actually printing them. Of course, both time and paper are valuable resources, so I started to look for alternatives to printing all the feedback forms. That’s when a colleague told be about gClass Folders, which I used to create a Google Drive folder for each of my students. It integrates with AutoCrat so that the merged documents can be automatically filed in the appropriate student’s folder. The details are in this post.

My experiment in numberless assessment has been great motivation to add some technical skills to my repertoire, but all that learning comes second to what I’m learning about how to help students make purposeful changes in their work and learning. I’m already noticing that students are paying closer attention to the rubrics that go with their work and are better able to comment on the extent to which their work met the requirements for each assignment. Stay tuned for further reflection as I continue working towards giving better feedback.

# Giving Better Feedback: gClass Folders

There are a lot of things I really like about giving students written feedback instead of number grades, but the only thing that I don’t like is the amount of paper I use when printing out copies of rubrics or the individualized letters created with AutoCrat. In the spirit of just-in-time learning, a colleague helped me set up gClass Folders for my class.

I know that gClass Folders offers a lot of different capabilities, which I’m sure I will explore eventually, but for now I’m using it as a way to deliver individualized feedback to students without using any paper. You can read about the technical details of how I do that in this post and detailed instruction are available on the gClass Folders website.

Besides the obvious advantages of saving trees by using less paper, I’m really excited about the possibilities this opens up. I like that both the student and I have access to the finished file. The electronic version is less likely to get lost than a paper copy, students (or I) can easily share the file with their parents and I can easily keep and retrieve a copy if I need to refer back to it.

I know that I’ve only scratched the surface of what I could do with this tool, but I’m glad to have started experimenting with the possibilities at this point in the year. By the time September rolls around, I’ll have a better idea of how I would like to set up folders at the beginning of the year so that students can collect an electronic portfolio of their work and the feedback I give them.