Reflection in the MYP

Smiling afro-american woman with cloud formed dialog on chalkboardReflection is woven throughout the Middle Years Program. At the very core of the program, as in all IB programs, being reflective is one of the ten Learner Profile attributes that we cultivate in our students. Similarly, developing specific reflections skills is one of the Approaches to Learning skills that is developed across the IB continuum. The ability to reflect in discipline-specific ways is also embedded many of the MYP subject areas. For example, in English, students are taught to “produce texts that demonstrate insight, imagination and sensitivity while exploring and reflecting critically on new perspectives and ideas arising from personal engagement with the creative process” (criterion C). In their arts courses, they “create an artistic response that intends to reflect the world around them (criterion D) and in science, students regularly reflect on the implications of science (criterion D).

 

The design and physical and health education (PHE) courses address reflection in even more detail. In PHE, students develop the ability to “explain and demonstrate strategies that enhance interpersonal skills; develop goals; apply strategies to enhance performance; and analyse and evaluate performance” (criterion D). In design (including courses as varied as theatre tech, coding, film and creative writing), students learn to “design detailed and relevant testing methods, which generate data, to measure the success of the solution; critically evaluate the success of the solution against the design specification; explain how the solution could be improved;  and explain the impact of the solution on the client/target audience.” (criterion D).


With this variety of reflective skills permeating the whole program, and embedded in subject-specific objectives and assessment criteria, students get regular practice and feedback about the development of this essential skill set. Moreover, because the ability to reflect is explicitly stated among the learning objectives – and therefore included in the assessment framework – it is something that is intentionally taught, rather than something that is implicitly expected.
Continue reading

Advertisements

Helping with homework

Last spring, I had a conversation with a parent that has stuck with me ever since. She initiated a meeting with me because she wanted a textbook (or similar resource) so that she could study the same math content as her child in order to be able to help with homework. At first, the request sounded totally reasonable, and even admirable. I love the idea of a parent modeling life-long learning by learning along with her child; however, I felt uneasy about the request and couldn’t put my finger on why.

Stalling for a bit of time to figure out my own confusing reaction to the request, I asked the parent why she felt responsible for helping with homework (again, a weird question since I’m totally in favour of families supporting learning at home). She explained that both  her parents were teachers and were very helpful to her as a student, especially when a teacher had covered content too quickly, or when she didn’t understand the way a teacher had explained something.

That’s when the penny dropped. As a teacher, one of the reasons I assign homework is to gauge whether students understand the content and whether they’re ready to move on. When parents help with homework, the product that I see gives the impression that everything is going well… even when it isn’t. As much as this parent appreciated the help of her parents, her teachers never found out that they weren’t meeting her needs: the homework was complete and correct, indicating (perhaps incorrectly) that the pace and approach were fully effective.

In contexts where there are marks to be earned from homework, there is an incentive in helping children earn as many of those marks as they can; however, if homework is really going to be about learning  – the student learning the content and the teacher learning about students’ progress – then that kind of incentive needs to be removed (as I have argued before). Students must be able to present their skills honestly so that teachers can give helpful feedback and adjust their instruction.

So, how can parents help more helpfully? Here are some ideas that come to mind…

  • instead of correcting work, prompt your child to check their own work using appropriate resources and strategies (like an answer key, spell-check)
  • if your child is unsure whether something is correct, or why something is correct, prompt them to follow-up with their teacher before school or during class (ideally before the assignment is due)
  • remind children to use the feedback that they have received… this could mean doing corrections (just for the sake of learning, not for extra credit), or perhaps they can use the feedback to improve subsequent work

If you have additional suggestions, please post them in the comments.

Mathematical Mindsets

This post is adapted from a piece I wrote for my school newsletter in the Fall of 2016.

I have borrowed the title of this article from an excellent book by Jo Boaler. A researcher in from Stanford University, Dr. Boaler draws compelling connections between her work in mathematics education and the work of Carol Dweck, another Stanford researcher, who studies the growth mindset. Dweck draws an important distinction between a growth mindset and a fixed mindset. Those with a fixed mindset believe that their intelligence is innate and cannot be expanded, whereas those with a growth mindset believe that they can increase their intelligence through effort.

125489887_124cf772c5_bA growth mindset is essential for learning in mathematics. Research has shown that students with a fixed mindset tend to avoid challenging work. Interestingly, this tendency is particularly pronounced in high-achieving students, likely because an inability solve a challenging problem is a threat to their self-concept as a smart person. Conversely, students with a growth mindset see challenging problems as an opportunity to extend their skills and develop their intelligence. Continue reading

Progress vs. Performance

I am increasingly aware of the distinction between progress and performance when it comes to assessment. While assessment is about evaluating a students performance in relation to a specific set of standards, I think it is important that teachers, students and parents focus more on the progress that they demonstrate through assessment.

sylvia-grown-mindset-statements-760x570

When we focus on performance, students can be afraid to show their work for fear that it won’t meet expectations but when we focus on progress, all student work is an opportunity to improve and demonstrate growth.

When we focus on performance, students are extrinsically motivated by grades but when we focus on progress, students develop intrinsic motivation.

When we focus on performance, we measure all students from the same starting point, but when we focus on progress, student growth is measured from each individual’s starting point.

When we focus on performance, we are tempted to lower standards so that all students can feel successful, but when we focus on progress, we are more likely to raise the standards, so that all students can continue to improve.

Growth Mindset for Math Teachers

I’ll admit that I’m still a bit discouraged by last week’s Global News story blaming inquiry-based math instruction for low test scores. While the article won’t dissuade me from teaching math by inquiry, I do worry about the message that it (and others like it) send to teachers who are working hard to develop innovative strategies that will ensure the success of all their students.

Encouraged and inspired by this image by @sylviaduckworth, I now offer a pep talk to teachers:

Instead of “A traditional approach to math is good enough,” try, “I owe it to myself to show my students and colleagues the best I can do.” Continue reading

Book Review: What’s math got to do with it?

I recently read What’s math got to do with it? by Jo Boaler, a professor of mathematics education at Stanford University. The book is both engaging and informative. While filled with references to current research in a variety of fields, her prose is accessible, interesting and relevant to anyone with an interest in how children learn math, whether they are trained as educators or not.

Continue reading